Homotopy Parametric Simplex Method for Sparse Learning

نویسندگان

  • Haotian Pang
  • Tuo Zhao
  • Robert J. Vanderbei
  • Han Liu
چکیده

High dimensional sparse learning has imposed a great computational challenge to large scale data analysis. In this paper, we are interested in a broad class of sparse learning approaches formulated as linear programs parametrized by a regularization factor, and solve them by the parametric simplex method (PSM). Our parametric simplex method offers significant advantages over other competing methods: (1) PSM naturally obtains the complete solution path for all values of the regularization parameter; (2) PSM provides a high precision dual certificate stopping criterion; (3) PSM yields sparse solutions through very few iterations, and the solution sparsity significantly reduces the computational cost per iteration. Particularly, we demonstrate the superiority of PSM over various sparse learning approaches, including Dantzig selector for sparse linear regression, LAD-Lasso for sparse robust linear regression, CLIME for sparse precision matrix estimation, sparse differential network estimation, and sparse Linear Programming Discriminant (LPD) analysis. We then provide sufficient conditions under which PSM always outputs sparse solutions such that its computational performance can be significantly boosted. Thorough numerical experiments are provided to demonstrate the outstanding performance of the PSM method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Parametric Simplex Approach to Statistical Learning Problems

In this paper, we show that the parametric simplex method is an efficient algorithm for solving various statistical learning problems that can be written as linear programs parametrized by a so-called regularization parameter. The parametric simplex method offers significant advantages over other methods: (1) it finds the complete solution path for all values of the regularization parameter by ...

متن کامل

A Dictionary Learning Method for Sparse Representation Using a Homotopy Approach

In this paper, we address the problem of dictionary learning for sparse representation. Considering the regularized form of the dictionary learning problem, we propose a method based on a homotopy approach, in which the regularization parameter is overall decreased along iterations. We estimate the value of the regularization parameter adaptively at each iteration based on the current value of ...

متن کامل

Revisiting compressed sensing: exploiting the efficiency of simplex and sparsification methods

We present two new approaches to solve large-scale compressed sensing problems. The first approach uses the parametric simplex method to recover very sparse signals by taking a small number of simplex pivots while the second approach reformulates the problem using Kronecker products to achieve faster computation via a sparser problem formulation. While both approaches are not new optimization m...

متن کامل

The fastclime package for linear programming and large-scale precision matrix estimation in R

We develop an R package fastclime for solving a family of regularized linear programming (LP) problems. Our package efficiently implements the parametric simplex algorithm, which provides a scalable and sophisticated tool for solving large-scale linear programs. As an illustrative example, one use of our LP solver is to implement an important sparse precision matrix estimation method called CLI...

متن کامل

Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation

JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1704.01079  شماره 

صفحات  -

تاریخ انتشار 2017